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Page Object Detection
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Abstract— In this article, a lateral feature enhancement (LFE)1

backbone network is proposed to enrich feature representation2

effectively for page object detection (POD) across various scales.3

Our LFE backbone network has three feature enhancement4

modules. First, feature enhancement of large page object is a5

bottom-up feature pyramid, enhancing features of large page6

objects, which convey more important information to readers.7

Second, the LFE includes a top-down feature pyramid propa-8

gating representative semantical features to lower layers and a9

lateral connection for feature enhancement in each layer. Third,10

lateral skip connection is designed to retain the original feature11

details. The stacking strategies of bottom-up, top-down, and12

lateral connections are beneficial to overall object detection. Visu-13

alization of feature indicates that the proposed LFE backbone14

network enhances global semantic information as well as detailed15

features of small page objects. Comparative experiments on the16

two state-of-the-art datasets show that it achieves excellent results17

with 0.950 mean of AP (mAP) on PubLayNet and 0.892 mAP on18

POD with more strict metric intersection over union (IoU) = 0.8,19

respectively. Compared with both computer vision (CV)-based20

unimodal detectors and multimodal detectors, the proposed LFE21

network performs excellently. Visual effect experiments compare22

the performances of CV-based detectors. The results show that23

our detector outperforms others with strict metric, especially in24

the detection of small page objects.25

Index Terms— Deep convolutional neural network26

(CNN), document image, feature enhancement, page object27

detection (POD).28

I. INTRODUCTION29

PAGE object detection is a crucial preceding step in30

automatic document analysis and understanding, which31

aims to classify the segmented regions semantically into tables,32

figures, formulas, texts, and other page parts, so as to let a33

machine understand content. Page objects have a large range of34

size variation. Different from natural scene images, document35

images have their own distribution. Comparatively, objects,36

such as figures and tables, belong to large objects. Formula37

and section title are comparatively small objects. Text blocks38

occupied majority of the distribution.39

For natural scene image objects detection, there exist two40

categories of detectors to extract visual features, which are41
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one-stage and two-stage detectors [1]. One-stage detectors 42

include You Only Look Once (YOLO) [2], YOLO v4 [3], You 43

Only Look At CoefficienTs ++ (YOLACT++) [4], Single 44

Shot MultiBox Detector (SSD) [5], RetinaNet [6], Single- 45

Shot Object Detector based on Multi-Level Feature Pyramid 46

Network (M2Det) [7], RefineNet [8], and so on. One-stage 47

detectors are suitable for real-time tasks [9], [10], [11], usually 48

without region proposal network (RPN). In contrast with one- 49

stage detectors, two-stage detectors achieve high accuracy by 50

proposing regions for detected objects [12], [13], [14] for 51

classification and localization. Due to the RPN module, two- 52

stage detectors, such as regions with convolutional neural 53

network (CNN) features (R-CNN) [15], Fast R-CNN [16], 54

Faster R-CNN [17], Mask R-CNN [18], and so on, are able 55

to filter out a large number of negative locations, which 56

brings better accuracy but less efficiency when compared 57

with one-stage detectors. According to the requirements of 58

different applications, it suggested that the network can be 59

designed to make a trade-off between accuracy and speed. 60

Two kinds of detectors both need backbone network to extract 61

features, which are generally based on convolutional neural 62

networks (CNNs), such as AlexNet [19], Visual Geometry 63

Group (VGG) [20], residual network (ResNet) [21], and so on. 64

To further utilize features at various scales, a feature pyramid 65

network (FPN) [22] is proposed. In visual detection task, 66

FPN is integrated to backbone, such as ResNet, for extracting 67

region of interest (RoI) features from various levels of feature 68

pyramid. Lower resolution feature map from high level has 69

richer semantic information. Meanwhile, the high-resolution 70

low-level layers contain spatial localization information, since 71

the extracted feature maps are decisive fundaments for network 72

performance [23]. 73

In the field of page object detection (POD), deep learning 74

methods are introduced for different tasks, such as table 75

detection [24], [25], formula detection [26], and various 76

POD [27], [28], [29], [30]. Among these methods, most are 77

two-stage detectors. The POD competition in the Interna- 78

tional Conference on Document Analysis and Recognition 79

(ICDAR2017) [31], [32] summarizes top seven detectors, five 80

of which are based on two-stage detector Faster R-CNN [17], 81

and one of which is based on one-stage detector SSD [5]. 82

More recent competition on scientific literature parsing (SLP) 83

in ICDAR2021 [33], [34] concludes top nine detectors, which 84

at least has five two-stage detectors, and the rest four teams 85

did not provide their detector information. In competitions 86

POD2017 [32] and SLP [34], backbone networks of two-stage 87

detectors are mostly VGG [20], ResNet [21], or their varia- 88

tions. Apart from CNN-based backbone network, traditional 89
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methods are also integrated into deep learning architecture for90

feature extraction. For example, Li et al. [35] use conditional91

random field (CRF) to extract spatial feature for CNN, and92

Younas et al. [36] consider traditional computer vision (CV)93

representations (color, connection, and so on) as inputs for94

deep learning model.95

Compared with the previous work, the main novelties of96

this article are the following.97

1) Present feature enhancement of large page objects98

according to page object distribution caused by 2-D99

translations and zooming in/out of page object in the100

page layout process.101

2) Propose lateral feature enhancement (LFE) with the aim102

to enhance feature representation of small objects as103

well as large objects. This enhancement is top-down104

with LFE in each layer, whereas enhancement in (1) is105

bottom-up. Two kinds of enhancement are designed for106

page objects detection across various scales. It is noted107

that the introduction of low-level spatial information to108

deeper layers can help large objects recognition. Mean-109

while, the propagation of high-level semantic signals110

upsampled to higher resolution low-level feature layers111

enhances the performance semantically.112

3) Design a lateral skip connection from backbone network113

to feature pyramids to enhance features in multiple114

scales.115

The rest of this article is organized as follows. Related116

works are introduced in Section II. Our feature enhancement117

backbone network and two-stage detector are proposed in118

Section III. Experimental results and discussion are presented119

at Section IV. The conclusion is given in Section V.120

II. RELATED WORKS121

To deal with scale variation task, input image pyramid122

methods were initial attempts. As rapid development of deep123

learning architectures, feature pyramid becomes more practical124

for object detection. It is well known that the feature pyramid125

module can be easily fit into deep learning networks. Both126

one-stage and two-stage detectors apply feature pyramids.127

As a typical one-stage detector, SSD [5] constructs feature128

pyramid by selecting two layers from backbone VGG16 and129

four layers from stride 2 convolution. Deconvolutional single130

shot detector (DSSD) [37] uses deconvolution layers from a131

single layer of backbone ResNet network. Deconvolution lay-132

ers are to aggregate context and explore high-level semantics133

for shallow features.134

The well-known FPN [22] utilizes lateral connections to135

fuse feature maps in a top-down manner. Recently, M2Det [7]136

develops thinned U-shape modules (TUMs) and exploits the137

decoder layers of each TUM for detecting objects of different138

scales. Mixture feature pyramid network (MFPN) [38] assem-139

bles top-down, bottom-up, and fusing-splitting FPN in parallel140

manner to enhance small-, large-, and medium-sized object141

detection, respectively. Path aggregation network (PAnet) [39]142

adds bottom-up path augmentation upon FPN to boost local-143

ization information from lower layers. It is claimed that stack-144

ing multiple feature pyramids proposed by neural architecture145

search (NAS)-FPN [40] increases detection accuracy.146

Typically, FPN architectures use top-down and bottom- 147

up to detect objects with various sizes. By stacking feature 148

pyramids in parallel or sequentially, the multiscale FPN can 149

significantly enhance feature representation. Top-down FPN 150

integrates high-level semantic to low-level features for small 151

objects representation. In contrast, bottom-up FPN introduces 152

low-level spatial information to high-level features for enrich- 153

ing large objects description. There are other proposal-based 154

methods focusing on anchor adjustment to deal with scale 155

variation. Connectionist text proposal network (CTPN) [41] 156

develops vertical anchors and connects fine-scale text propos- 157

als so as to detect text with various scales in natural images. 158

In the field of document image analysis, deep learning gains 159

its popularity to detect, segment, and recognize document 160

page objects. Some CNNs work for end-to-end pixel level 161

analysis, whereas others aim to detect and classify regions with 162

bounding boxes. In ICDAR2017 POD competition, almost all 163

the participated teams used deep learning for object detection, 164

including popular SSD, Faster R-CNN-based models aiming to 165

detect tables, mathematical equations, and figures [32]. Also, 166

in ICDAR2021 SLP competition, half of the detectors are 167

based on Mask R-CNN, which generally apply ResNet and 168

FPN as a backbone network [34]. 169

The research motivation behind our work is to consider 170

inherent characteristics of document image. We analyze 3-D 171

projection in natural image and 2-D transformation in layout 172

design of page image, so as to design an effective backbone 173

network for feature extraction from document image. Also, 174

a two-stage detector for page object is realized based on 175

the proposed backbone network. The backbone network is 176

designed in Section III. 177

III. LFE NETWORK 178

A. Analyzing 3-D Projection in Natural Image and 2-D 179

Transformation in Layout Design of Page Image 180

In natural scene, objects are projected on an image with 181

perspective projection. As shown in Fig. 1(a), suppose aircraft 182

tractors A moves to the position of B with the same orientation, 183

the size in image decreases dramatically, and different sides of 184

it appear in image. In this case, the same object shows different 185

sizes and appearances because of 3-D projection. In the field of 186

object detection, aircraft tractor B is called “small object” [22]. 187

Fig. 1(b) shows another case of 3-D projection of three buses: 188

front view of bus A, and back view of bus B and C. If bus A 189

was in position B or C with the same orientation of B or C, 190

its different part was projected in the 2-D image. Without 191

considering zooming in/out in image, front view, back view, 192

and side view of a bus have different image features for CV. 193

Therefore, 3-D projection changes feature of the same object 194

in 2-D image. 195

On the other hand, 2-D transformation of page objects 196

is essentially different from 3-D projection in natural scene. 197

As shown in Fig. 2(a), there are two tables A and B, of which 198

positions are swapped in Fig. 2(b) or zooming out two tables to 199

add tables C and D in Fig. 2(c). As for page object, swapping 200

position, zooming in/out, or others 2-D transformation is used 201

to communicate information clearly and effectively. To design 202

a good page layout, 2-D transformation of page object rarely 203

involves shearing, not to mention projection transformation. 204
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Fig. 1. 3-D projection of objects in natural scene (Microsoft COCO (MSCOCO) dataset [42]). (a) Two aircraft tractors. (b) Two aircraft tractors.

Fig. 2. 2-D transformation of page objects (PubLayNet dataset [43]). (a) Two tables. (b) Exchanging positions. (c) Zooming in/out.

Through analyzing 3-D projection in natural image and205

2-D transformation of page object, we get the following206

conclusions.207

1) “Small object” in natural image is caused by perspective208

projection. It does not mean “small object” in natural209

image is not important.210

2) Page object is not concerned with perspective projec-211

tion. “Small object” in document image is designed to212

let large object show more important information. For213

example, figure is larger than footer. Their sizes will not214

change.215

3) Different orientations of object in natural scene result in216

different image features.217

4) Orientation of page object will not change in the process218

of layout design.219

B. LFE Backbone Network220

According to the abovementioned four conclusions,221

we design a backbone network, and its purpose is to enhance222

lateral feature in a feature pyramid. The design principles223

include the following.224

1) ResNet [21] is employed to extract fine/coarse features,225

as shown in Fig. 3. From C2 to C5, feature resolution226

is reduced.227

2) Feature enhancement of large page object follows228

ResNet as shown in Fig. 3 with three up arrows,229

because large object features in bottom layer remain230

unchanged when it passes three up arrows. According231

to conclusions 1) and 2), in document image, large 232

object conveys more important information; therefore, 233

we design this path to enhance feature, which can be 234

denoted as follows: 235

Ui(1) =
{

Ci i = 2

Ui−1(1) ⊕ Ci 2 < i ≤ 5
(1) 236

where i represents the ith layer, “1” of Ui (1) means 237

the first block of feature enhancement, and ⊕ is feature 238

enhancement operation. 239

3) LFE follows 2) in Fig. 3 with three down arrows. 240

First, large object features in top layer are enhanced 241

along the top-down path. Second, image feature of page 242

object will not change according to conclusions 3) and 243

4); hence, the features of small page objects are in 244

lower layers with relatively high resolution. LFE are the 245

following: 246

Di(1) =
{

Ui(1) i = 5

Di+1(1) ⊕ Ui(1) 2 ≤ i < 5
(2) 247

as for Di+1(1), and it is enhanced by Ui (1) through a 248

lateral path. 249

4) Feature enhancement with lateral skip runs after 3), 250

inspired by deep residual learning [21], [44]. Feature 251

can be enhanced by original feature in the same layer 252

(the same resolution) 253

Fi(1) = Di (1) ⊕ Ci 2 ≤ i ≤ 5. (3) 254
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Fig. 3. LFE backbone network.

Fig. 4. Framework of LFE network.

5) A feature enhancement block consists of (1)–(3). Fig. 3255

shows the first block denoted as “(1),” the second block256

and the Nth block.257

C. Implementation of Backbone Network258

The implementation of ResNet-101 follows configuration259

in [21]. The numbers of feature channel in layers C2, C3,260

C4, and C5 are 256, 512, 1024, and 2048, respectively. The261

resolution reduction rate is 0.5 from a layer to its above262

neighbor. For example, the width and the height of feature in263

C3 are 1/2 of feature in C2. The feature enhancement operation264

in (1)–(3) is defined as a sequence in the following:265

1) resample resolution;266

2) resample channels using 1 × 1 convolution;267

3) element-wise addition;268

4) 3 × 3 convolution.269

When features in a layer are fused with another layer,270

resolution should be resampled to match the target layer.271

In step 1), resolution is downsampled from bottom to top,272

whereas resolution is upsampled along the top-down arrows.273

Step 2) fuses features using element-wise addition. To let274

the number of feature channels in a layer match another275

layer, 1 × 1 convolution is utilized in step 3). Moreover,276

1 × 1 convolution extracts and fuses features from all feature277

channels. In step 4), 3 × 3 convolution is employed to extract278

and fuse features not only in feature slice but also from all279

feature channels.280

Take U3(1) in (1) for example; the resolution of U2(1)281

is downsampled by 1/2, and the channels are upsampled by282

2 using 1 × 1 convolution, and then, element-wise addition 283

is performed of U2(1) and C3. Finally, 3 × 3 convolution is 284

implemented to output U3(1). In (2), the resolution of D5(1) 285

is upsampled by 2; the channels are upsampled by 2 using 286

1 × 1 convolution, and then, it is added to U4(1). Eventually, 287

D4(1) is generated using 3 × 3 convolution. There is a little 288

difference in (3) that 2) is not executed. This example is in 289

the first block of Fig. 3. The feature enhancement operation 290

in the second block follows the same sequence 1)–4). 291

D. LFE Network Architecture 292

As shown in Fig. 4, the proposed LFE network consists 293

of three parts: the proposed LFE backbone network described 294

in Fig. 3, RPN and RoI alignment. The configuration of the 295

last two parts follows the implementation in [18]. The input 296

is a document image, in which there is a figure, several para- 297

graphs, and a section title. The outputs have three components: 298

bounding boxes indicating location of detected objects, pixel- 299

wise masks predicting locations, and object classification. 300

IV. EXPERIMENTAL RESULTS 301

A. Visualization of Feature Enhancement 302

To get insight into feature enhancement process of the 303

proposed backbone network, features in LFE backbone net- 304

work (Fig. 3) are visualized in Figs. 5–7. The LFE network 305

(Fig. 4) is trained with eight GPUs(TITAN XP 12 G) for 306

90 000 iterations, using more than 300k document images 307

in the training set of the PubLayNet dataset [43]. Two 308
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Fig. 5. Visualization of features in the bottom layer of backbone network.

images in development set are used to investigate feature309

enhancement.310

Fig. 5 shows original images, ground truths, and features in311

the bottom layer of backbone network (Fig. 3). The feature312

U2(1), which is directly from ResNet-101, has more detailed313

features. Especially, the edge of figure is enhanced in the314

second row, and so do the lines of table. After “feature315

enhancement of large page object” and “LFE” in Section III-B,316

D2(1) loses local information, such as edge details in a figure;317

however, global information is enhanced, that is to say, pixels318

in foreground merge together to enhance contrast to merging319

pixels in background.320

Using formula (3), D2(1) ⊕ C2 to get F2(1). Apparently,321

a detailed feature is enhanced from C2 to F2(1). There322

is a sharp contrast between foreground and background in323

D2(2). Furthermore, the contrast becomes sharper in F2(2).324

Comparing F2(2) with ground truth, in the first row, list object325

(in “cyan” bounding box), text object (in “green” bounding326

box), and title object (in “red” bounding box) in “ground truth327

1” correspond to “blue” foreground, which is distinguished328

from background by “red”/“yellow” border in F2(2). In the329

second row, the contrast between figure object and background330

is sharper.331

The implementation of “LFE” leads to accurate detection332

of “small object,” such as in Fig. 6; section title with “red”333

bounding box in ground truth 1 corresponds to a blue area334

with clear-cut boundary in F2(2). Especially, although the335

PubLayNet dataset [43] does not provide annotations for page336

number and header, our backbone network is capable of337

extracting visual features of them, as shown in Fig. 6.338

On the other hand, features in top layer of backbone are also339

enhanced. Take C5 of page 1 in Fig. 7 for example, and global340

information is enhanced from C5 to D5(1) to obtain F5(1).341

Comparing F5(1) with ground truth 1 in Fig. 5, F5(1) clearly342

indicates the positions of two columns in page 1. Therefore,343

the proposed backbone network (Fig. 3) is able to enhance344

features on both local information and global information.345

B. POD Evaluation346

The POD competition dataset in ICDAR2017 [32] is used347

to evaluate the proposed LFE network. This dataset is the348

Fig. 6. Detection of unlabeled object and small object.

Fig. 7. Visualization of feature enhancement in the top layer.

most widely used to evaluate the page object detector. It is 349

collected from scientific papers on the web CiteSeer. In total, 350

there are more than 2000 document images with three types 351

of page objects (formula, table, and figure) and various lay- 352

outs (single column, two columns, and multicolumn). In the 353

competition, 1600 images were used as training set, and test 354

set had 817 images. We used the same training set and 355

test set. Apart from eight detectors in the competition, three 356

more recent detectors are used to evaluate the proposed LFE 357

network, including Li et al. [35], YOLACT++ [4], and Adap- 358

tive Training Sample Selection (ATSS) [45]. YOLACT++, 359

ATSS, and LFE network are trained with eight GPUs (TITAN 360

XP 12 G) for 90 000 iterations. 361

Table I compares the performance of different detectors with 362

the same configurations of intersection over union (IoU), aver- 363

age precision (AP), and mean of AP (mAP) in ICDAR2017 364

POD competition [32]. The last two rows show our LFE 365
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TABLE I

EVALUATION OF THE PROPOSED LFE NETWORK ON THE
ICDAR2017 POD DATASET [32]

networks with “1” and “2” feature enhancement block(s),366

according to Fig. 3.367

As for IoU threshold of 0.6, our LFE-2 and ATSS [45]368

obtain the best mAP 0.929. ATSS adaptively selects positive369

and negative samples according to statistical characteristics of370

object, and it brings contribution to common object detection.371

Thus, it might achieve slight improvement on figure detec-372

tion, which is similar to common object in texture diversity.373

Whereas, our LFE-2 enhances the features of an image itself.374

Also, our LFE-1 gets the second mAP of 0.927. Hence, the375

LFE network with “two” feature enhancement blocks shows376

better performance than LFE-1 with “one” block. For “small377

object” formula, our LFE-2 and LFE-1 acquire top two APs:378

0.957 and 0.950. Due to “LFE,” features of “small object” are379

enhanced in lateral direction in the bottom layer of backbone380

network (Fig. 3), so as to our detectors outperform others.381

When it comes to the table, ATSS and our LFE-1 gain the382

best two APs: 0.971 and 0.961. Li et al. [35] make well use383

of prior knowledge of line distribution in page, so the detector384

is able to clearly distinguish figure from other objects (AP385

for figure: 0.896). Meanwhile, this is why Li et al. performs386

well for all page objects. YOLACT++ [4] is not designed387

for document image processing; therefore, it is inferior to388

Li et al.389

Given the IoU threshold of 0.8, it seems similar conclusions.390

Our LFE-1 and LFE-2 achieve the best two mAPs: 0.892 and391

0.890. They overcome others to detect formula. ATSS gets the392

best score on table, and Li et al. achieve the best AP on figure.393

It is safe to conclude that our LFE-1 and LFE-2 show the394

best performance according to mAP and AP on “small object”395

formula. Li et al. performs well because of considering prior396

knowledge of page object distribution in document image.397

ATSS is good at detecting table and figure.398

As shown in Table I, table detection result of LFE-2399

achieves 0.959 mAP at 0.6 IoU threshold, and it is 0.002 lower400

than LFE-1. This issue might be attributed to slight learning401

degradation when we train a deeper LFE. However, we mainly402

focus on investigating the efficiency of the proposed LFE403

network on document object detection in this article. Also,404

it can be seen that when the baseline is equipped with single405

Fig. 8. Visualization of table and figure detection on the POD2017 dataset
with a CP of 0.9. (a) Ground truth. (b) LFE-2, CP = 0.9. (c) LFE-1,
CP = 0.9. (d) ATSS, CP = 0.9. (e) YOLACT++, CP = 0.9.

LFE block “LFE-1,” we get comparable results on both of the 406

POD dataset and the PubLayNet dataset. 407

C. Comparison With Multimodal Networks 408

In ICDAR 2021 SLP Competition (ICDAR2021-SLP) [33], 409

[34], several top-level detectors are using multimodal net- 410

works. To compare performance with the multimodal detector, 411

the same dataset PubLayNet dataset [43] in ICDAR2021-SLP 412

is used to train our LFE-1 and LFE-2. Totally, more than 340k 413

document images are randomly split into train, development, 414

and test sets, and the ratio is 32:1:1. The dataset includes five 415

types of document objects: text, title, table, figure, and list. The 416

ICDAR2021-SLP competition uses the detection evaluation 417

metrics of Common Objects in Context (COCO) [46]: AP and 418

mAP averaged over multiple intersection over ten IoU from 419
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Fig. 9. Visualization of formula detection on the POD2017 dataset with various CP values. (a) Ground truth. (b) LFE-2, CP = 0.9. (c) LFE-1, CP = 0.9.
(d) LFE-1, CP = 0.8. (e) ATSS, CP = 0.9. (f) ATSS, CP = 0.8. (g) ATSS, CP = 0.7–0.5. (h) ATSS, CP = 0.4. (i) YOLACT++, CP = 0.9–0.4.

0.50 to 0.95 with a step size of 0.05. In Table II, YOLACT++,420

ATSS, and LFE network are trained with eight GPUs (TITAN421

XP 12 G) for 90 000 iterations.422

As shown in Table II, vision, semantics, and relations423

(VSR) and SRK achieve two highest mAPs: 0.957 and 0.950.424

VSR takes advantage of portable document format (PDF)425

parsing to extract structured information, such as texts and426

their position for a natural language processing (NLP)-based427

flow in its network framework. Meanwhile, the other flow is428

CV-based to process document image. Different from VSR,429

SRK utilizes two models, all based on CV, in which one is 430

designed for small page object: title, the other is for other 431

objects. Our LFE-1 and LFE-2 get mAP: 0.950 and 0.948; 432

therefore, they are comparable to VSR and SRK. 433

The aforementioned methods make full use of complemen- 434

tary information for page layout modeling. For instances, list 435

objects have more indentations in page layout. Thus, both of 436

SRK and VSR achieve better list detection performances than 437

LFE with layout sensitiveness. On text, LFE-1 and LFE-2 438

outperform other methods. Generally, texts take up most of the 439

Authorized licensed use limited to: Universiti Teknikal Malaysia Melaka-UTEM. Downloaded on October 28,2022 at 01:47:32 UTC from IEEE Xplore.  Restrictions apply. 



5020310 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022

Fig. 10. Visualization of POD on the PubLayNet dataset with CP 0.7. (a) Ground truth. (b) LFE-2, CP = 0.7. (c) LFE-1, CP = 0.7. (d) ATSS, CP = 0.7.
(e) YOLACT++, CP = 0.7.

TABLE II

EVALUATION OF THE PROPOSED LFE NETWORK ON

THE PUBLAYNET DATASET [43]

space of the page. Features of texts are effectively enhanced440

by our backbone network (Fig. 3), so that our method gets441

good performance.442

As for small page object title, VSR achieves the best AP443

0.923, and our LFE method performs well with an AP of444

0.902. This result verifies the effectiveness of that: “LFE”445

leads to accurate detection of “small object.”446

The proposed LFE-1 and LFE-2 achieve the best AP447

0.984 on table, whereas VSR and SRK obtain better APs on448

list and figure.449

Overall, in spite of being unimodal, using feature enhance-450

ment strategies 2)–5) in Section III-B, our method is compara-451

ble to multimodal methods VSR and SRK. For text, title, and452

table, our LFE method performs well, but for list and figure, 453

multimodal methods perform better. 454

D. Visualization of POD With Various CPs 455

For an insight into the detection abilities of our LFE-1 456

and LFE-2, detection results with various confidence prob- 457

abilities (CPs) are visualized in Figs. 8–10. The CP is the 458

most widely used as an output representing the likelihood 459

for each predicted class in the state-of-the-art detectors, such 460

as YOLACT++ [4], ATSS [45], Faster R-CNN [17], Mask 461

R-CNN [18], and so on, and is used in the detection evaluation 462

metrics of COCO [46]. 463

As can be seen from Fig. 8, yellow and blue bounding boxes 464

are used to locate table and figure on the POD2017 dataset. 465

LFE-2, LFE-1, ATSS, and YOLACT++ produce the same 466

visual effect with the CP of 0.9 from Fig. 8(b)–(e). That is to 467

say, for a strict metric CP of 0.9, four detectors achieve well 468

visual effect according to ground truth in Fig. 8(a). 469

Fig. 9 shows different visual effects of four detectors with 470

various CP values. Fuchsia bounding boxes locate formula 471

objects on the POD2017 dataset. Compared with ground truth 472

in Fig. 9(a), LFE-2 finds out all figures and formulas, although 473

the bounding boxes of formulas in the middle of the left 474

column and the right column do not perfectly match the ground 475

truth, with the strict CP of 0.9 in Fig. 9(b). 476
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As shown in Fig. 9(c), there is a small part of formulas477

in the middle of the left column that cannot be detected by478

LFE-1 with a CP of 0.9. When the CP value decreases to479

0.8, there is still a formula LFE-1 that cannot find out. The480

number of blocks of feature enhancement has a significant481

impact on the detection of “small page object” formula,482

as described in Section III-B: “LFE” results in better detection483

of “small object,” because LFE-2 has one more block of484

feature enhancement than LFE-1.485

ATSS does not perform good enough with a CP of 0.9,486

as shown in Fig. 9(e). This detector only finds out a figure487

and a small part of formulas. This situation improves when488

the metric becomes weaker, CP from 0.8 [Fig. 9(f)] to 0.4489

[Fig. 9(h)], two figures and all formula are detected gradually.490

In Fig. 9(i), YOLACT++ detects two figures when CP ranges491

from 0.9 to 0.4.492

Fig. 10 compares visual effects of four detectors on the493

PubLayNet dataset with a CP of 0.7. Yellow, blue, green,494

and red bounding boxes locate table, figure, text, and title495

objects, respectively. As can be seen from Fig. 10(b) and (c),496

LFE-2 and LFE-1 find out all page objects. ATSS misses a497

title in the right column, in Fig. 10(d). YOLACT++ performs498

worse in Fig. 10(e). It cannot detect both the title in the499

right column and texts above and under the table in the left500

column.501

Based on the preceding analysis of visual effect, we see502

that the proposed LFE-2 and LFE-1 outperform ATSS and503

YOLACT++ on “small page objects,” such as formulas on504

the POD2017 dataset, titles on the PubLayNet dataset, and505

one or two lines of texts on the PubLayNet dataset.506

Additionally, the proposed detector can be applied in the507

SparkFun Jetbot [48], which is a popular platform and is508

capable of deep learning inference. It is powered by NVIDIA509

Jetson Nano [49], which has 128 NVIDIA cores. Besides,510

the Jetson Nano Developer Kit provides software support for511

parallel implementation of different applications. Images are512

captured by a Universal Serial Bus (USB) Web camera, and513

the High-Definition Multimedia Interface (HDMI) interface is514

used for visualizing inference results. Our detector can be515

employed in the Pytorch framework of the SparkFun Jetbot516

to detect scene text.517

V. CONCLUSION518

In this work, we propose the LFE network by analyzing519

page object distribution in the page layout process. The LFE520

backbone network aggregates bottom-up and top-down feature521

pyramids sequentially as an enhancement block, and the lateral522

skip connection is added after each enhancement block for523

retaining the output feature details. In the LFE backbone524

network, the introduction of low-level spatial information to525

deeper layers can help large objects recognition. Meanwhile,526

the propagation of high-level semantic signals upsampled527

to higher resolution low-level feature layers enhances the528

performance semantically. The LFE network achieves great529

results with the mAP of 0.950 on PubLayNet, and the mAP530

of 0.892 on POD with strict metric IoU = 0.8. Extensive531

experimental results on the two state-of-the-art databases532

demonstrate that our LFE network retains more original fea-533

ture information and enhances feature extraction and feature534

representation ability on document images. It is capable of 535

improving the document object detection accuracy. 536
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